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Figure 2.  Engineering a transmembrane receptor using the split-DBD principle. (a) General architecture of 
transmembrane split-DBD system. The DBD and Juxtamembrane of the CadC transcriptional activator (3) were 
fused to an Leu(16)TM, an external linker, and VHH-Caffeine  or VHH-Control as the LBD. (b) Principle of transmembrane 
receptor activation. Genes encoding CadC-VHH fusions are placed under the control of the pLacO1 promoter. The N-
terminal CadC DBD is located in the cytosol and the C-terminal VHH in the periplasm. In the presence of caffeine, the 
chimeric receptor CadC-VHH-Caffeine undergo ligand-induced dimerization andactivates downstream reporter gene 
expression. (c) Response of CadC-VHH-Caffeine and CadC-VHH-Control to increasing concentrations of caffeine at 
different expression level. (d) Activation fold of the two CadC-VHH fusions. Fold changes were calculated from (C) as 
in Fig. 1. These results demonstrate that a synthetic transmembrane receptor can be engineered by fusing split-
DBDs with a periplasmic VHH scaffold.

Figure 1. Engineering a synthetic cytosolic biosensor using a split DNA-binding domain. (a) Overview of the split-
repressor system. LexA DBD was fused to a camelid VHH antibody that recognizes caffeine (VHH-Caffeine). The 
monomeric chimeric receptor is expressed in the cytosol upon IPTG induction. In the presence of caffeine, the 
chimeric receptor dimerizes and binds to the LexA operator, blocking expression of the reporter gene. (b) Response
of cells containing the artificial receptors LexA-VHH-Caffeine and LexA-VHH-Control to increasing concentrations
of caffeine at different expression levels. (c) Repression fold of the two LexA-VHH fusions. For each IPTG concentration, 
fold changes were calculated from (B) relatively to cells grown without caffeine (lower row). (d) General architecture of 
LexA-VHH-Caffeine connected to the BetI inverter. LexA-VHH-Caffeine controls BetI expression, which controls the 
expression of the reporter gene. (e) Caffeine response of cells containing the LexA-VHH-Caffeine receptor connected 
to the BetI inverter. (f) Fold activation of the LexA-VHH-Caffeine/BetI inverter circuit. Calculated as in (C). These results 
demonstrate that split-DBDs can be activated via ligand-induced dimerization of antibody-based LBD.

Living cells can sense and process myriad signals in order to survive and reproduce. Using the tools of synthetic biology, researchers have started to modify cells to perform 
sophisticated biosensing, diagnostics or targeted therapies. However, these approaches are currently limited by the difficulty to detect molecules for which no receptor is 
found in nature.
Here we use ligand-induced dimerization of monomeric DNA-Binding Domains (split-DBDs) fused to an artificial Ligand-Binding Domain (LBD) to engineer modular receptors 
operating in bacteria. As a versatile LBD scaffold, we used VHH camelid antibodies (1), which can be engineered to detect many ligands of interest. We designed both 
cytosolic and transmembrane receptors and highlighted several principles that can be used to improve receptor behavior. Finally, using L-form bacteria (2) with an deficient 
outer membrane, we demonstrate that our transmembrane receptor can detect extracellular proteins and trigger downstream intracellular signaling. 
Because of the versatility of antibody-based detection and the number of existing transcriptional regulators, we anticipate that our platform could be tailored to derive 
orthogonal receptors detecting many ligands of interest. Scalable detection systems using split-DBDs could be combined with existing sensors to support many applications 
including diagnostics, environmental monitoring, or cellular therapeutics.

Figure 3. Optimizing transmembrane receptor signal-to-noise ratio through linker engineering. (a) Schematic diagram 
of transmembrane split-DBD receptor with different external linkers. (b) Flow-cytometry data from cells containing the 
different variants of transmembrane split-activators. (c) Quantification of the response to caffeine at different IPTG 
concentrations of cells containing different variants with RPUs (left panel) and fold change (right panel). (d) Response of
the CadC-VHH-Caffeine NL variant to caffeine at different expression levels (left panel). Fold changes were calculated 
as in Fig. 1 (right panel). These results demonstrate that chimeric transmembrane receptor response can be tuned by 
optimizing interdomain linker sequences.

Figure 4. Transmembrane receptor-mediated detection of extracellular proteins using L-form bacteria.  (a) Preparation
of L-form E.coli. (b) Phase contrast images of L-form E.coli cells showing typical spherical cells. Principle of antibody detection 
with L-form E.coli. Due to the cell wall deficiency, the C-terminal c-Myc tag of chimeric receptor should be exposed on the 
L-form E.coli surface. With the presence of bivalent anti-c-Myc antibody, the chimeric receptor should oligomerize and trigger 
downstream reporter gene expression. (b) Response of CadC-VHH-Caffeine (NL version) to anti-c-Myc antibody. These results
demonstrate that a bacterial chimeric transmembrane receptor on L-form bacteria surface can be used to detect 
protein ligands in extracellular environment.
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